Q.
For $ x \in\left(0, \frac{\pi}{4}\right) $
$R _{ n }=\displaystyle\sum_{ r =1}^{2 n } \sin \left(\sin ^{-1} x ^{4 r -3}\right), \,\,\, S _{ n }=\displaystyle\sum_{ r =1}^{2 n } \cos \left(\cos ^{-1} x ^{4 r -2}\right), $
$T _{ n }=\displaystyle\sum_{ r =1}^{2 n } \tan \left(\tan ^{-1} x ^{4 r -1}\right), \,\,\, U _{ n }=\displaystyle\sum_{ r =1}^{2 n } \cot \left(\cot ^{-1} x ^{4 r }\right)$
where $n \in N$ and $n \geq 4$
Inverse Trigonometric Functions
Solution: