Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For x>0, the sum of the series (1/1+x)-((1-x)/(1+x)2) +((1-x)2/(1+x)3)-⋅s ∞ is equal to
Q. For
x
>
0
,
the sum of the series
1
+
x
1
−
(
1
+
x
)
2
(
1
−
x
)
+
(
1
+
x
)
3
(
1
−
x
)
2
−
⋯
∞
is equal to
1763
206
Sequences and Series
Report Error
A
4
1
8%
B
2
1
56%
C
4
3
19%
D
1
17%
Solution:
S
=
1
+
x
1
−
(
1
+
x
)
2
(
1
−
x
)
+
(
1
+
x
)
3
(
1
−
x
)
2
−
⋯
∞
The above series is an infinite
G
.
P
.
whose first term
=
1
+
x
1
and common ratio
=
(
1
+
x
)
−
(
1
−
x
)
∴
S
∞
=
1
+
(
1
+
x
1
−
x
)
1
+
x
1
=
2
1