Thank you for reporting, we will resolve it shortly
Q.
For $x>0,$ the sum of the series $\frac{1}{1+x}-\frac{(1-x)}{(1+x)^{2}}$ $+\frac{(1-x)^{2}}{(1+x)^{3}}-\cdots \infty$ is equal to
Sequences and Series
Solution:
$S=\frac{1}{1+x}-\frac{(1-x)}{(1+x)^{2}}+\frac{(1-x)^{2}}{(1+x)^{3}}-\cdots \infty$
The above series is an infinite $G.P$.
whose first term $=\frac{1}{1+x}$ and common ratio $=\frac{-(1-x)}{(1+x)}$
$\therefore \,\, S_{\infty}=\frac{\frac{1}{1+x}}{1+\left(\frac{1-x}{1+x}\right)}=\frac{1}{2}$