Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For x>0, if f(x)=∫ limits1x ( log e t/(1+t)) d t, then f(e)+f((1/e)) is equal to
Q. For
x
>
0
,
if
f
(
x
)
=
1
∫
x
(
1
+
t
)
l
o
g
e
t
d
t
,
then
f
(
e
)
+
f
(
e
1
)
is equal to
2133
219
JEE Main
JEE Main 2021
Integrals
Report Error
A
1
B
-1
C
2
1
D
0
Solution:
f
(
x
)
=
1
∫
x
(
1
+
t
)
l
o
g
e
t
d
t
f
(
x
1
)
=
1
∫
1/
x
1
+
t
ℓ
n
t
d
t
,
let
t
=
y
1
=
+
1
∫
x
1
+
y
l
n
y
⋅
y
2
y
d
y
=
1
∫
x
y
(
1
+
y
)
ℓ
n
y
d
y
hence
f
(
x
)
+
f
(
x
1
)
=
1
∫
x
t
(
1
+
t
)
(
1
+
t
)
ℓ
n
t
d
t
=
1
∫
x
t
ℓ
n
t
d
t
=
2
1
ln
2
(
x
)
so
f
(
e
)
+
f
(
e
1
)
=
2
1
..
(
3
)