Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For $x>0,$ if $f(x)=\int\limits_{1}^{x} \frac{\log _{e} t}{(1+t)} d t,$ then $f(e)+f\left(\frac{1}{e}\right)$ is equal to

JEE MainJEE Main 2021Integrals

Solution:

$f(x)=\int\limits_{1}^{x} \frac{\log _{e} t}{(1+t)} d t$
$f\left(\frac{1}{x}\right)=\int\limits_{1}^{1 / x} \frac{\ell n t}{1+t} d t,$ let $t=\frac{1}{y}$
$=+\int\limits_{1}^{ x } \frac{\ln y}{1+ y } \cdot \frac{ y }{ y ^{2}} dy$
$=\int\limits_{1}^{x} \frac{\ell n y}{y(1+y)} d y$
hence
$f(x)+f\left(\frac{1}{x}\right)=\int\limits_{1}^{x} \frac{(1+t) \ell n t}{t(1+t)} d t=\int\limits_{1}^{x} \frac{\ell n t}{t} d t$
$=\frac{1}{2} \ln ^{2}( x )$
so $f( e )+f\left(\frac{1}{ e }\right)=\frac{1}{2} \,\,\,\, ..(3)$