Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For Un=∫ limits01 xn(2-x)n d x ; Vn=∫ limits01 xn(1-x)n d x n ∈ N, which of the following statement(s) is/are true?
Q. For
U
n
=
0
∫
1
x
n
(
2
−
x
)
n
d
x
;
V
n
=
0
∫
1
x
n
(
1
−
x
)
n
d
x
n
∈
N
, which of the following statement(s) is/are true?
127
90
Integrals
Report Error
A
U
n
=
2
n
V
n
B
U
n
=
2
−
n
V
n
C
U
n
=
2
2
n
V
n
D
U
n
=
2
−
2
n
V
n
Solution:
Given
U
n
=
0
∫
1
x
n
⋅
(
2
−
x
)
n
d
x
;
V
n
=
0
∫
1
x
n
⋅
(
1
−
x
)
n
d
x
in
U
n
put
x
=
2
t
⇒
d
x
=
2
d
t
∴
U
n
=
2
0
∫
1/2
2
n
⋅
t
n
2
n
(
1
−
t
)
n
d
t
....(1)
Now
V
n
=
2
0
∫
1/2
x
n
(
1
−
x
)
n
d
x
(Using Queen)....(2)
From (1) and (2)
U
n
=
2
2
n
⋅
V
n
⇒
(
C
)