Thank you for reporting, we will resolve it shortly
Q.
For $U_n=\int\limits_0^1 x^n(2-x)^n d x ; V_n=\int\limits_0^1 x^n(1-x)^n d x n \in N$, which of the following statement(s) is/are true?
Integrals
Solution:
Given $U _{ n }=\int\limits_0^1 x ^{ n } \cdot(2- x )^{ n } dx ; V _{ n }=\int\limits_0^1 x ^{ n } \cdot(1- x )^{ n } dx$ in $U_n$
put $x=2 t \Rightarrow d x=2 d t$
$\therefore U_n=2 \int\limits_0^{1 / 2} 2^n \cdot t^n 2^n(1-t)^n d t$....(1)
Now $ V_n=2 \int\limits_0^{1 / 2} x^n(1-x)^n d x$(Using Queen)....(2)
From (1) and (2)
$U _{ n }=2^{2 n } \cdot V _{ n } \Rightarrow( C )$