Parabola, y2+6y−2x+5=0 ⇒y2+6y=2x−5 ⇒y2+6y+9=2x−5+9 ⇒(y+3)2=2(x+2) ⇒Y2=2X ( where, Y=y+3 and X=x+2)
This parabola is in the form of y2=4ax by comparing ⇒4a=2 a=21
Vertex =(0,0) ⇒x+2=0 and y+3=0 ⇒x=−2 and y=−3
So, vertex (−2,−3)
Focus =(a,0) (x+2,y+3)=(21,0) ⇒x+2=1/2 and y+3=0 ⇒x=−23,y=−3
So, focus (−23,−3).
Equation of directrix, X=−a ⇒x+2=−21 ⇒x=2−1−2 ⇒x=2−5 ⇒2x+5=0
Equation of axis, Y=0 ⇒y+3=0