Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For the parabola $y^{2}+6 y-2 x+5=0$, match the items in List-I with the suitable item in List-II given below:
List-I List-II
(I) Vertex (A) $\left(-\frac{3}{2},-3\right)$
(II) Focus (B) $\left(\frac{3}{2},-3\right)$
(III) Equation of the directrix (C) $2 x+5=0$
(IV) Equation of the axis (D) $2 x+y+3=0$
(E) $y+3=0$
(F) $(-2,-3)$

The correct matching isI

AP EAMCETAP EAMCET 2018

Solution:

Parabola, $y^{2}+6 y-2 x+5=0$
$\Rightarrow y^{2}+6 y=2 x-5$
$\Rightarrow y^{2}+6 y+9=2 x-5+9$
$\Rightarrow (y+3)^{2}=2(x+2)$
$\Rightarrow Y^{2}=2 X$
$($ where, $Y=y+3$ and $X=x+2)$
This parabola is in the form of $y^{2}=4 a x$ by comparing
$\Rightarrow 4 a =2 $
$a =\frac{1}{2} $
Vertex $=(0,0) $
$\Rightarrow x+2 =0 $ and $ y+3=0$
$\Rightarrow x=-2$ and $y=-3$
So, vertex $(-2,-3)$
Focus $=(a, 0) $
$(x+2, y+3) =\left(\frac{1}{2}, 0\right)$
$\Rightarrow x+2=1 / 2$ and $y+3=0$
$\Rightarrow x=-\frac{3}{2}, y=-3$
So, focus $\left(-\frac{3}{2},-3\right)$.
Equation of directrix,
$X=-a$
$\Rightarrow x+2=-\frac{1}{2}$
$ \Rightarrow x=\frac{-1}{2}-2$
$\Rightarrow x=\frac{-5}{2}$
$\Rightarrow 2 x+5=0$
Equation of axis,
$Y=0 $
$\Rightarrow y+3=0$