Given equation of ellipse 25(x−3)2+16(y−2)2=1
Let (x−3)=X and (y−2)=Y, then 52x2+42y2=1
Here, a=5 and b=4.
Also, e=1−a2b2=1−2516=53
Now, equation of the major axis Y=0 ⇒y−2=0 ∴y=2
So, (i)→(q)
Equation of a directrix X=ea=35×5=325 ⇒x−3=325 ⇒x=325+3=334 ⇒3x=34
So, (ii)→(p)
Equation of a latusrectum, X=± ae ⇒x−3=±ae ⇒x−3=±5×53 ⇒x=±3+3 ∴x=6,0
So, (iii)→(s)