Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For the ellipse given by $\frac{(x-3)^{2}}{25}+\frac{(y-2)^{2}}{16}=1$, match the equations of the lines given in List I with those on the List II.
List I List II
(i) The equation of the major axis (p) $3 x=34$
(ii) The equation of a directrix (q) $y=2$
(iii) The equation of a latusrectum (r) $x+y=9$
(s) $x=6$
(t) $x=3$
(u) $3y=34$

TS EAMCET 2016

Solution:

Given equation of ellipse
$\frac{(x-3)^{2}}{25}+\frac{(y-2)^{2}}{16}=1$
Let $(x-3)=X$ and $(y-2)=Y$, then
$\frac{x^{2}}{5^{2}}+\frac{y^{2}}{4^{2}}=1$
Here, $a=5$ and $b=4$.
Also, $e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{16}{25}}=\frac{3}{5}$
Now, equation of the major axis $Y=0$
$\Rightarrow y-2=0$
$\therefore y=2$
So, $(i) \rightarrow (q)$
Equation of a directrix
$X=\frac{a}{e}=\frac{5}{3} \times 5=\frac{25}{3}$
$\Rightarrow x-3=\frac{25}{3}$
$\Rightarrow x=\frac{25}{3}+3=\frac{34}{3}$
$\Rightarrow 3 x=34$
So, $(ii) \rightarrow( p )$
Equation of a latusrectum,
$X=\pm$ ae
$\Rightarrow x-3=\pm a e$
$\Rightarrow x-3=\pm 5 \times \frac{3}{5}$
$\Rightarrow x=\pm 3+3$
$\therefore x=6,0$
So, $(iii) \rightarrow( s )$