Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For n>0, ∫ limits02 π (x sin 2 n x/ sin 2 n x+ cos 2 n x) d x= ldots ldots .
Q. For
n
>
0
,
0
∫
2
π
s
i
n
2
n
x
+
c
o
s
2
n
x
x
s
i
n
2
n
x
d
x
=
……
.
2056
188
IIT JEE
IIT JEE 1997
Integrals
Report Error
A
B
C
D
Solution:
Let
I
=
0
∫
2
π
s
i
n
2
n
x
+
c
o
s
2
n
x
x
s
i
n
2
n
x
d
x
…
(i)
I
=
0
∫
2
n
[
s
i
n
(
2
π
−
x
)
]
2
n
+
[
c
o
s
(
2
π
−
x
)
]
2
n
(
2
π
−
x
)
[
s
i
n
(
2
π
−
x
)
]
2
n
d
x
[
∵
0
∫
a
f
(
x
)
d
x
=
0
∫
a
f
(
a
−
x
)
d
x
]
I
=
0
∫
2
π
s
i
n
2
n
x
+
c
o
s
2
n
x
(
2
π
−
x
)
⋅
s
i
n
2
n
x
d
x
⇒
I
=
0
∫
2
π
s
i
n
2
n
x
+
c
o
s
2
n
x
2
π
s
i
n
2
n
x
d
x
−
0
∫
2
π
s
i
n
2
n
x
+
c
o
s
2
n
x
x
s
i
n
2
n
x
d
x
⇒
I
=
0
∫
2
π
s
i
n
2
n
x
+
c
o
s
2
n
x
2
π
s
i
n
2
n
x
d
x
−
1
[from Eq.(i)]
⇒
I
=
0
∫
2
π
s
i
n
2
n
x
+
c
o
s
2
n
x
π
s
i
n
2
n
x
d
x
⇒
I
=
π
[
0
∫
π
s
i
n
2
n
x
+
c
o
s
2
n
x
π
s
i
n
2
n
x
d
x
+
0
∫
π
s
i
n
2
n
(
2
π
−
x
)
+
c
o
s
2
n
(
2
π
−
x
)
s
i
n
2
n
(
2
π
−
x
)
d
x
]
[
using property
0
∫
2
a
f
(
x
)
d
x
=
0
∫
a
[
f
(
x
)
+
f
(
2
a
−
x
)]
d
x
]
=
π
[
0
∫
π
s
i
n
2
n
x
+
c
o
s
2
n
x
s
i
n
2
n
x
d
x
d
x
+
0
∫
π
s
i
n
2
n
x
+
c
o
s
2
n
x
s
i
n
2
n
x
d
x
]
⇒
I
=
2
π
0
∫
π
s
i
n
2
n
x
+
c
o
s
2
n
x
s
i
n
2
n
x
d
x
d
x
]
⇒
I
=
4
π
[
0
∫
π
/2
s
i
n
2
n
+
c
o
s
2
n
x
s
i
n
2
n
x
d
x
d
x
]
....(ii)
⇒
I
=
4
π
0
∫
π
/2
s
i
n
2
n
(
π
/2
−
x
)
+
c
o
s
2
n
(
π
/2
−
x
)
s
i
n
2
n
(
π
/2
−
x
)
d
x
⇒
I
=
4
π
0
∫
π
/2
c
o
s
2
n
x
+
s
i
n
2
n
x
c
o
s
2
n
x
d
x
…
(iii)
On adding Eqs. (ii) and (iii), we get
2
I
=
4
π
0
∫
π
/2
s
i
n
2
n
x
+
c
o
s
2
n
x
s
i
n
2
n
x
+
c
o
s
2
n
x
d
x
⇒
2
I
=
4
π
0
∫
π
/2
1
d
x
=
4
π
[
x
]
0
π
/2
=
4
π
⋅
π
/2
⇒
I
=
π
2