Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For $n>0, \int\limits_{0}^{2 \pi} \frac{x \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x=\ldots \ldots .$

IIT JEEIIT JEE 1997Integrals

Solution:

Let $I =\int\limits_{0}^{2 \pi} \frac{x \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x \ldots$ (i)
$I =\int\limits_{0}^{2 n} \frac{(2 \pi-x)[\sin (2 \pi-x)]^{2 n}}{[\sin (2 \pi-x)]^{2 n}+[\cos (2 \pi-x)]^{2 n}} d x$
$\left[\because \int\limits_{0}^{a} f(x) d x=\int\limits_{0}^{a} f(a-x) d x\right]$
$I=\int\limits_{0}^{2 \pi} \frac{(2 \pi-x) \cdot \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x$
$\Rightarrow I=\int\limits_{0}^{2 \pi} \frac{2 \pi \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x-$
$\int\limits_{0}^{2 \pi} \frac{x \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x$
$\Rightarrow I=\int\limits_{0}^{2 \pi} \frac{2 \pi \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x-1$
[from Eq.(i)]
$\Rightarrow I=\int\limits_{0}^{2 \pi} \frac{\pi \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x$
$\Rightarrow I=\pi\left[\int\limits_{0}^{\pi} \frac{\pi \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x\right.$
$\left.+\int\limits_{0}^{\pi} \frac{\sin ^{2 n}(2 \pi-x)}{\sin ^{2 n}(2 \pi-x)+\cos ^{2 n}(2 \pi-x)} d x\right]$
$\left[\text { using property } \int\limits_{0}^{2 a} f(x) d x=\int\limits_{0}^{a}[f(x)+f(2 a-x)] d x \right]$
$=\pi\left[\int\limits_{0}^{\pi} \frac{\sin ^{2 n} x d x}{\sin ^{2 n} x+\cos ^{2 n} x} d x \right.$
$\left.+\int\limits_{0}^{\pi} \frac{\sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x\right]$
$\left.\Rightarrow I=2 \pi \int\limits_{0}^{\pi} \frac{\sin ^{2 n} x d x}{\sin ^{2 n} x+\cos ^{2 n} x} d x\right]$
$\Rightarrow I=4 \pi\left[\int\limits_{0}^{\pi / 2} \frac{\sin ^{2 n} x d x}{\sin ^{2 n}+\cos ^{2 n} x} d x\right]$ ....(ii)
$\Rightarrow I=4 \pi \int\limits_{0}^{\pi / 2} \frac{\sin ^{2 n}(\pi / 2-x)}{\sin ^{2 n}(\pi / 2-x)+\cos ^{2 n}(\pi / 2-x)} d x$
$\Rightarrow I=4 \pi \int\limits_{0}^{\pi / 2} \frac{\cos ^{2 n} x}{\cos ^{2 n} x+\sin ^{2 n} x} d x \ldots$ (iii)
On adding Eqs. (ii) and (iii), we get
$2 I=4 \pi \int\limits_{0}^{\pi / 2} \frac{\sin ^{2 n} x+\cos ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x$
$\Rightarrow 2 I=4 \pi \int\limits_{0}^{\pi / 2} 1 d x=4 \pi[x]_{0}^{\pi / 2}=4 \pi \cdot \pi / 2$
$\Rightarrow I =\pi^2$