Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For each x ε R, let [x] be the greatest integer less than or equal to x. Then displaystyle limx→0- (x([x] +[x]) sin[x]/|x|) is equal to
Q. For each
x
εR
, let
[
x
]
be the greatest integer less than or equal to
x
. Then
x
→
0
−
lim
∣
x
∣
x
(
[
x
]
+
[
x
]
)
sin
[
x
]
is equal to
4671
199
JEE Main
JEE Main 2019
Limits and Derivatives
Report Error
A
−
sin
1
55%
B
0
20%
C
1
17%
D
sin
1
8%
Solution:
lim
x
→
0
−
∣
x
∣
x
(
[
x
]
+
∣
x
∣
)
s
i
n
[
x
]
x
→
0
−
[
x
]
=
−
1
⇒
lim
x
→
0
−
−
x
x
(
−
x
−
1
)
s
i
n
(
−
1
)
=
−
sin
1
∣
x
∣
=
−
x