Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For each $x \varepsilon R$, let $[x]$ be the greatest integer less than or equal to $x$. Then $\displaystyle\lim_{x\to0^{-}} \frac{x\left(\left[x\right] +\left[x\right]\right) \sin\left[x\right]}{\left|x\right|} $ is equal to

JEE MainJEE Main 2019Limits and Derivatives

Solution:

$\lim_{x\to0^{-} } \frac{x\left(\left[x\right]+\left|x\right|\right)\sin\left[x\right]}{\left|x\right|}$
$ x \to0^{-} $
$ \left[x\right] = - 1 \Rightarrow \lim_{x\to0^{-}} \frac{x\left(-x-1\right)\sin\left(-1\right)}{-x} = -\sin 1 $
$ \left|x \right| = - x$