Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For each t ∈ R, let [t] be the greatest integer less than or equal to t. Then, displaystyle limx→1+ ((1-|x| + sin|1-x|) sin ((π/2) [1-x]) /|1-x|[1-x])
Q. For each
t
∈
R
, let [
t
] be the greatest integer less than or equal to
t
. Then,
x
→
1
+
lim
∣
1
−
x
∣
[
1
−
x
]
(
1
−
∣
x
∣
+
sin
∣
1
−
x
∣
)
sin
(
2
π
[
1
−
x
]
)
3070
207
JEE Main
JEE Main 2019
Limits and Derivatives
Report Error
A
equals -1
6%
B
equals 1
27%
C
does not exist
24%
D
equals 0
44%
Solution:
lim
x
→
1
+
∣1
−
x
∣
[
1
−
x
]
(
1
−
∣
x
∣
+
s
i
n
∣1
−
x
∣
)
s
i
n
(
2
π
[
1
−
x
]
)
=
lim
x
→
1
+
(
x
−
1
)
(
−
1
)
(
1
−
x
)
+
s
i
n
(
x
−
1
)
sin
(
2
π
(
−
1
)
)
=
lim
x
→
1
+
(
1
−
(
x
−
1
)
s
i
n
(
x
−
1
)
)
(
−
1
)
=
(
1
−
1
)
(
−
1
)
=
0