Q.
For each $t \in R$, let [$t$] be the greatest integer less than or equal to $t$. Then,
$\displaystyle\lim_{x\to1+} \frac{\left(1-\left|x\right| +\sin\left|1-x\right|\right) \sin \left(\frac{\pi}{2} \left[1-x\right]\right) }{\left|1-x\right|\left[1-x\right]} $
Solution: