Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For any quadratic polynomial f(x), it is true that f(x)= f(a)+f prime(a)(x-a)+(f prime prime(a)/2 !)(x-a)2, where a is any real number. If (3 x2+4 x+7/(x-2)3)=(A/(x-2)3)+(B/(x-2)2)+(C/(x-2)) and g(x)= 3 x2+4 x+7 then A+B+C=
Q. For any quadratic polynomial
f
(
x
)
, it is true that
f
(
x
)
=
f
(
a
)
+
f
′
(
a
)
(
x
−
a
)
+
2
!
f
′′
(
a
)
(
x
−
a
)
2
, where
a
is any real number. If
(
x
−
2
)
3
3
x
2
+
4
x
+
7
=
(
x
−
2
)
3
A
+
(
x
−
2
)
2
B
+
(
x
−
2
)
C
and
g
(
x
)
=
3
x
2
+
4
x
+
7
then
A
+
B
+
C
=
108
159
TS EAMCET 2021
Report Error
A
g
(
2
)
+
g
′
(
2
)
+
g
′′
(
2
)
B
g
′′
(
2
)
+
2
g
(
2
)
+
2
!
g
′
(
1
)
C
g
(
2
)
+
g
′
(
2
)
+
2
!
g
′
(
2
)
D
2
g
(
2
)
+
2
g
′
(
2
)
+
2
!
g
′′
(
2
)
Solution:
3
x
2
+
4
x
+
7
=
A
+
B
(
x
−
2
)
+
C
(
x
−
2
)
2
Given,
f
(
x
)
=
f
(
a
)
+
f
′
(
a
)
(
x
−
a
)
+
2
!
f
′′
(
a
)
(
x
−
a
)
2
and
g
(
x
)
=
3
x
2
+
4
x
+
7
∴
a
=
2
,
A
=
g
(
2
)
,
B
=
g
′
(
2
)
,
C
=
2
!
g
′′
(
2
)
⇒
A
+
B
+
C
=
g
(
2
)
+
g
′
(
2
)
+
2
!
g
′′
(
2
)