Q. For any quadratic polynomial $f(x)$, it is true that $f(x)=$ $f(a)+f^{\prime}(a)(x-a)+\frac{f \prime \prime(a)}{2 !}(x-a)^2$, where $a$ is any real number. If $\frac{3 x^2+4 x+7}{(x-2)^3}=\frac{A}{(x-2)^3}+\frac{B}{(x-2)^2}+\frac{C}{(x-2)}$ and $g(x)=$ $3 x^2+4 x+7$ then $A+B+C=$
TS EAMCET 2021
Solution: