The proof of this result is given below
Let the given statement be P(n):(a+b)n=nC0an+nC1an−1b+nC2an−2b2+ …+nCn−1a⋅bn−1+nCnbn
For n=1, we have P(1):(a+b)1=1C0a1+1C1b1=a+b
Thus, P(1) is true.
Suppose P(k) is true for some positive integer k, i.e., (a+b)k=kC0ak+kC1ak−1b+kC2ak−2b2+…+kCkbk… (i)
We shall prove that P(k+1) is also true, i.e., (a+b)k+1=k+1C0ak+1+k+1C1akb+k+1C2ak−1b2+ ⋯+k+1Ck+1bk+1
Now, (a+b)k+1=(a+b)(a+b)k =(a+b)(kC0ak+kC1ak−1b+kC2ak−2b2+ …+kCk−1abk−1+kCkbk)[ from Eq. (i) ] =kC0ak+1+kC1akb+kC2ak−1b2+…+kCk−1a2bk−1 +kCkabk+kC0akb+kC1ak−1b2+kC2ak−2b3+ …+kCk−1abk+kCkbk+1 (by actual multiplication) =kC0ak+1+(kC1+kC0)akb+(kC2+kC1)ak−1b2+ …+(kCk+kCk−1)abk+kCkbk+1 (grouping like terms) =k+1C0ak+1+k+1C1akb+k+1C2ak−1b2+ …+k+1Ckabk+k+1Ck+1bk+1 ( using k+1C0=1,kCr+kCr−1=k+1Cr and kCk=1=k+1Ck+1)
Thus, it has been proved that P(k+1) is true whenever P(k) is true. Therefore, by principle of mathematical induction, P(n) is true for every positive integer n.
Hence, (a+b)n=nC0an+nC1an−1b+…+nCn−1abn−1+nCnbn