Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For any positive integer n,(a+b)n is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. For any positive integer $n,(a+b)^n$ is equal to
Binomial Theorem
A
${ }^n C_1 a^n+{ }^n C_2 a^{n-1} b+{ }^n C_3 a^{n-2} b^2+\ldots \ldots \ldots+{ }^n C_{n+1} b^n$
12%
B
${ }^n C_0 b^n+{ }^n C_1 b^{n-3} a+{ }^n C_2 b^{n-5} a^2+\ldots . .+{ }^n C_n a^n$
6%
C
${ }^n C_0 a^n+{ }^n C_1 a^{n-1} b+{ }^n C_2 a^{n-2} b^2+\ldots \ldots +{ }^n C_{n-1} a b^{n-1}+{ }^n C_n b^n $
75%
D
None of the above
7%
Solution:
The proof of this result is given below
Let the given statement be
$ P(n):(a+b)^n={ }^n C_0 a^n+{ }^n C_1 a^{n-1} b+{ }^n C_2 a^{n-2} b^2+ $
$ \ldots+{ }^n C_{n-1} a \cdot b^{n-1}+{ }^n C_n b^n$
For $n=1$, we have
$P(1):(a+b)^1={ }^1 C_0 a^1+{ }^1 C_1 b^1=a+b$
Thus, $P(1)$ is true.
Suppose $P(k)$ is true for some positive integer $k$, i.e.,
$(a+b)^k={ }^k C_0 a^k+{ }^k C_1 a^{k-1} b+{ }^k C_2 a^{k-2} b^2+\ldots+{ }^k C_k b^k \ldots \text { (i) }$
We shall prove that $P(k+1)$ is also true, i.e.,
$(a+b)^{k+1}={ }^{k+1} C_0 a^{k+1}+{ }^{k+1} C_1 a^k b+{ }^{k+1} C_2 a^{k-1} b^2+ $
$\cdots+{ }^{k+1} C_{k+1} b^{k+1}$
Now, $(a+b)^{k+1}=(a+b)(a+b)^k$
$=(a+b)\left({ }^k C_0 a{ }^k+{ }^k C_1 a^{k-1} b+{ }^k C_2 a^{k-2} b^2+\right. $
$\left.\ldots+{ }^k C_{k-1} a b^{k-1}+{ }^k C_k b^k\right)[\text { from Eq. (i) }]$
$={ }^k C_0 a{ }^{k+1}+{ }^k C_1 a^k b+{ }^k C_2 a{ }^{k-1} b^2+\ldots+{ }^k C_{k-1} a^2 b^{k-1}$
$ +{ }^k C_k a b^k+{ }^k C_0 a^k b+{ }^k C_1 a^{k-1} b^2+{ }^k C_2 a^{k-2} b^3+ $
$ \ldots+{ }^k C_{k-1} a b^k+{ }^k C_k b^{k+1} \text { (by actual multiplication) }$
$={ }^k C_0 a^{k+1}+\left({ }^k C_1+{ }^k C_0\right) a^k b+\left({ }^k C_2+{ }^k C_1\right) a^{k-1} b^2+ $
$ \ldots+\left({ }^k C_k+{ }^k C_{k-1}\right) a b^k+{ }^k C_k b^{k+1} \text { (grouping like terms) }$
$ ={ }^{k+1} C_0 a^{k+1}+{ }^{k+1} C_1 a^k b+{ }^{k+1} C_2 a^{k-1} b^2+$
$ \ldots+{ }^{k+1} C_k a b^k+{ }^{k+1} C_{k+1} b^{k+1} $
$ \left(\text { using }{ }^{k+1} C_0=1,{ }^k C_r+{ }^k C_{r-1}={ }^{k+1} C_r \text { and }{ }^k C_k=1={ }^{k+1} C_{k+1}\right) $
Thus, it has been proved that $P(k+1)$ is true whenever $P(k)$ is true. Therefore, by principle of mathematical induction, $P(n)$ is true for every positive integer $n$.
Hence,
$(a+b)^n={ }^n C_0 a^n+{ }^n C_1 a^{n-1} b+\ldots+{ }^n C_{n-1} a b^{n-1}+{ }^n C_n b^n$