Let the equation of the given ellipse be a2x2+b2y2=1 .
Let (acosθ,bsinθ) be the co-ordinates of the other extremities of the chord of the ellipse.
So, the positive end of the minor axis is (0,b) .
Let (h,k) be the mid-point of the chord.
So, h=2acosθ+0⇒cosθ=a2h..........(i)
and k=2bsinθ+b⇒sinθ=b2k−b..........(ii)
Now, squaring and adding both the equations, we get (sin)2θ+(cos)2θ=(b2k−b)2+(a2h)2 ⇒b24k2+b2−4kb+a24h2=1 ⇒b24k2−4kb+1+a24h2=1 ⇒b24k2−4kb+a24h2=0 ⇒a2h2+b2k2−bk=0
For locus, replacing h→x&k→y , we get a2x2+b2y2−by=0 which is an ellipse
So, the required locus is an ellipse.