Thank you for reporting, we will resolve it shortly
Q.
For an ellipse, the locus of mid points of chords which are drawn through an end of minor axis will be
NTA AbhyasNTA Abhyas 2022
Solution:
Let the equation of the given ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ .
Let $\left(a cos \theta , b sin \theta \right)$ be the co-ordinates of the other extremities of the chord of the ellipse.
So, the positive end of the minor axis is $\left(0 , b\right)$ .
Let $\left(h , k\right)$ be the mid-point of the chord.
So, $h=\frac{a cos \theta + 0}{2}\Rightarrow cos\theta =\frac{2 h}{a}..........\left(i\right)$
and $k=\frac{b sin \theta + b}{2}\Rightarrow sin\theta =\frac{2 k - b}{b}..........\left(i i\right)$
Now, squaring and adding both the equations, we get
$\left(sin\right)^{2}\theta +\left(cos\right)^{2}\theta =\left(\frac{2 k - b}{b}\right)^{2}+\left(\frac{2 h}{a}\right)^{2}$
$\Rightarrow \frac{4 k^{2} + b^{2} - 4 k b}{b^{2}}+\frac{4 h^{2}}{a^{2}}=1$
$\Rightarrow \frac{4 k^{2} - 4 k b}{b^{2}}+1+\frac{4 h^{2}}{a^{2}}=1$
$\Rightarrow \frac{4 k^{2} - 4 k b}{b^{2}}+\frac{4 h^{2}}{a^{2}}=0$
$\Rightarrow \frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}-\frac{k}{b}=0$
For locus, replacing $h \rightarrow x\&k \rightarrow y$ , we get
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{y}{b}=0$ which is an ellipse
So, the required locus is an ellipse.