Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For α, β, γ ∈ R, let A=[α2 6 8 3 β2 9 4 5 γ2] and B=[2 α 3 5 2 2 β 6 1 4 2 γ-3]. If trace A= trace B, then the value of (α-1+β-1+γ-1) is equal to
Q. For
α
,
β
,
γ
∈
R
,
let
A
=
⎣
⎡
α
2
3
4
6
β
2
5
8
9
γ
2
⎦
⎤
and
B
=
⎣
⎡
2
α
2
1
3
2
β
4
5
6
2
γ
−
3
⎦
⎤
. If trace
A
=
trace
B
, then the value of
(
α
−
1
+
β
−
1
+
γ
−
1
)
is equal to
454
149
Matrices
Report Error
Answer:
2
Solution:
We have trace
A
=
trace
B
, so
α
2
+
β
2
+
γ
2
=
2
α
+
2
β
+
2
γ
−
3
⇒
(
α
2
−
2
α
+
1
)
+
(
β
2
−
2
β
+
1
)
+
(
γ
2
−
2
γ
+
1
)
=
0
⇒
(
α
−
1
)
2
+
(
β
−
1
)
2
+
(
γ
−
1
)
2
=
0
⇒
α
=
1
,
β
=
1
,
γ
=
1
Hence,
(
α
−
1
+
β
−
1
+
γ
−
1
)
=
(
1
+
1
+
1
)
=
3.