Q. For $\alpha, \beta, \gamma \in R,$ let $A=\begin{bmatrix}\alpha^{2} & 6 & 8 \\ 3 & \beta^{2} & 9 \\ 4 & 5 & \gamma^{2}\end{bmatrix}$ and $B=\begin{bmatrix}2 \alpha & 3 & 5 \\ 2 & 2 \beta & 6 \\ 1 & 4 & 2 \gamma-3\end{bmatrix}$. If trace $A=$ trace $B$, then the value of $\left(\alpha^{-1}+\beta^{-1}+\gamma^{-1}\right)$ is equal to
Matrices
Solution: