Q.
For a non-zero complex number z, let arg(z) denote the principal argument with −π<arg(z)≤π. Then, which of the following statement(s) is (are) FALSE?
a) arg(−1−i)=−43π
b) f(t)=arg(−1+it)={π−tan−1(t),−π+tan−1t≥0t<0
Discontinuous at t=0 arg(z2z1)−arg(z1)+arg(z2) =argz1−arg(z2)+2nπ−arg(z1)+arg(z2)=2nπ
d) arg((z−z3)(z2−z1)(z−z1)(z2−z3))=π ⇒(z−z3)(z2−z1)(z−z1)(z2−z3) is real ⇒z,z1,z2,z3 are concyclic