Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For a non-zero complex number $z$, let arg(z) denote the principal argument with $- \pi < arg(z) \leq \pi$. Then, which of the following statement(s) is (are) FALSE?

JEE AdvancedJEE Advanced 2018

Solution:

a) $\arg (-1-i)=-\frac{3 \pi}{4}$
b) $f(t)=\arg (-1+i t)=\begin{cases}\pi-\tan ^{-1}(t), & t \geq 0 \\ -\pi+\tan ^{-1} & t < 0\end{cases}$
Discontinuous at $t = 0$
$\arg \left(\frac{z_{1}}{z_{2}}\right)-\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
$=\arg z_{1}-\arg \left(z_{2}\right)+2 n \pi-\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=2 n \pi$
d) $\arg \left(\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}\right)=\pi$
$\Rightarrow \frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}$ is real
$\Rightarrow z, z_{1}, z_{2}, z_{3}$ are concyclic