Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For 0 ≤ p ≤ 1 and for any positive a, b let I(p) = (a + b)p, J(p) = ap + bp, then
Q. For
0
≤
p
≤
1
and for any positive
a
,
b
let
I
(
p
)
=
(
a
+
b
)
p
,
J
(
p
)
=
a
p
+
b
p
, then
2315
204
WBJEE
WBJEE 2018
Report Error
A
I
(
p
)
>
J
(
p
)
0%
B
I
(
p
)
≤
J
(
p
)
88%
C
I
(
p
)
<
J
(
p
)
in
[
0
,
2
P
]
&
I
(
p
)
>
J
(
p
)
in
[
2
P
,
∞
)
0%
D
I
(
p
)
<
J
(
p
)
in
[
2
P
,
∞
)
&
J
(
p
)
>
I
(
p
)
in
[
0
,
2
P
]
12%
Solution:
Here, let
p
=
m
1
then
(
a
p
+
b
p
)
1/
p
=
(
a
1/
m
+
b
1/
m
)
m
=
a
+
b
+
k
,
k
≥
0
∴
a
p
+
b
p
≥
(
a
+
b
)
p
≥
(
a
+
b
)
⇒
J
(
p
)
≥
I
(
p
)