Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. For $0 \leq p \leq 1$ and for any positive $a, b$ let $I(p) = (a + b)^p, J(p) = a^p + b^p$, then

WBJEEWBJEE 2018

Solution:

Here, let $p=\frac{1}{m}$
then $\left(a^{p}+b^{p}\right)^{1 / p}=\left(a^{1 / m}+b^{1 / m}\right)^{m}$
$=a+b+k, k \geq 0$
$\therefore a^{p}+b^{p} \geq(a+b)^{p} \geq(a+b)$
$\Rightarrow J(p) \geq I(p)$