We have, 16sin2x+16cos2x=10 ⇒16sin2x+161−sin2x=10 ⇒16sin2x+16sin2x16=10
Let 16sin2x=y ∴y+y16=10 ⇒y2−10y+16=0 ⇒(y−8)(y−2)=0 ⇒y=8 and y=2 ∴16sin2x=8&16sin2x=2
Taking log2 both the sides in the above equation we get, sin2x=43,sin2x=41 . ⇒sinx=±23,±21 ⇒sinx=sin(±3π)&sinx=sin(±6π) ⇒x=nπ+(−1)n(±3π)&nπ+(−1)n(±6π),n∈I ⇒x=3π,32π,34π,35π,37π,38π,6π,65π,67π,611π,613π,617π
So, there are 12 solutions in [0,3π].