Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the total number of solutions of 16 sin2 x+16 cos2 x=10 in x∈ [0 , 3 π ] .
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Find the total number of solutions of $16^{\sin^{2} x}+16^{\cos^{2} x}=10$ in $x\in \left[0 , 3 \pi \right]$ .
NTA Abhyas
NTA Abhyas 2022
A
B
C
D
Solution:
We have, $16^{\sin^{2} x}+16^{\cos^{2} x}=10$
$\Rightarrow 16^{\sin^{2} x}+16^{1 - \sin^{2} x}=10$
$\Rightarrow 16^{sin^{2} x}+\frac{16}{16^{\sin^{2} x}}=10$
Let $16^{\sin^{2} x}=y$
$\therefore y+\frac{16}{y}=10$
$\Rightarrow y^{2}-10y+16=0$
$\Rightarrow \left(y - 8\right)\left(y - 2\right)=0$
$\Rightarrow y=8$ and $y=2$
$\therefore 16^{\sin^{2} x}=8\&16^{\sin^{2} x}=2$
Taking $log_{2}$ both the sides in the above equation we get,
$\sin^{2}x=\frac{3}{4},\sin^{2}x=\frac{1}{4}$ .
$\Rightarrow \sin x=\pm\frac{\sqrt{3}}{2},\pm\frac{1}{2}$
$\Rightarrow \sin x=\sin\left(\pm \frac{\pi }{3}\right)\&\sin x=\sin\left(\pm \frac{\pi }{6}\right)$
$\Rightarrow x=n\pi +\left(- 1\right)^{n}\left(\pm \frac{\pi }{3}\right)\&n\pi +\left(- 1\right)^{n}\left(\pm \frac{\pi }{6}\right),n\in I$
$\Rightarrow x=\frac{\pi }{3},\frac{2 \pi }{3},\frac{4 \pi }{3},\frac{5 \pi }{3},\frac{7 \pi }{3},\frac{8 \pi }{3},\frac{\pi }{6},\frac{5 \pi }{6},\frac{7 \pi }{6},\frac{11 \pi }{6},\frac{13 \pi }{6},\frac{17}{6}\pi $
So, there are $12$ solutions in $\left[\right.0,3\pi \left]\right..$