Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the sum of the local maximum and local minimum values of the function f(x)=( tan 3 x/ tan 3 x) on interval (0, (π/2))
Q. Find the sum of the local maximum and local minimum values of the function
f
(
x
)
=
t
a
n
3
x
t
a
n
3
x
on interval
(
0
,
2
π
)
42
96
Application of Derivatives
Report Error
Answer:
34
Solution:
y
=
t
a
n
3
x
t
a
n
3
x
=
t
a
n
3
x
(
1
−
3
t
a
n
2
x
)
3
t
a
n
x
−
t
a
n
3
x
y
=
t
a
n
2
x
(
1
−
3
t
a
n
2
x
)
3
−
t
a
n
2
x
=
t
(
1
−
3
t
)
3
−
t
where
tan
2
x
=
t
>
0
(
t
−
3
t
2
)
y
=
3
−
t
3
y
2
−
(
1
+
y
)
t
+
3
=
0
∴
t
>
0
⇒
D
≥
0
;
Sum of roots
>
0
;
Product of roots
>
0
hence
(
1
+
y
)
2
−
36
y
≥
0
;
3
y
1
+
y
>
0
and
y
1
>
0
hence
y
>
0
y
2
−
34
y
−
1
≥
0
(
y
−
17
)
2
≥
288
(
y
−
17
)
2
−
(
12
2
)
2
≥
04
<
b
r
/
>
(y-17-12 \sqrt{2})(y-17+12 \sqrt{2}) \geq 0
<
b
r
/
>
{[y-(17+12 \sqrt{2})][y-(17-12 \sqrt{2})] \geq 0}
<
b
r
/
><
im
g
c
l
a
ss
=
"
im
g
−
f
l
u
i
d
q
u
es
t
i
o
n
−
ima
g
e
"
a
lt
=
"
ima
g
e
"
src
=
"
h
ttp
s
:
//
c
d
n
.
t
a
r
d
i
g
r
a
d
e
.
in
/
im
g
/
q
u
es
t
i
o
n
/
ma
t
h
e
ma
t
i
cs
/
a
7
c
8
e
8
b
075
a
e
89
d
3609
f
9
a
6
f
a
f
15
e
a
e
9
−
.
p
n
g
"/
><
b
r
/
>
He
n
ce
y_{\max }=17-12 \sqrt{2}
<
b
r
/
>
y_{\min }=17+12 \sqrt{2}
<
b
r
/
>
y_{\max }+y_{\min }=34 \text { which is rational }$