Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the sum of the local maximum and local minimum values of the function f(x)=( tan 3 x/ tan 3 x) on interval (0, (π/2))
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Find the sum of the local maximum and local minimum values of the function $f(x)=\frac{\tan 3 x}{\tan ^3 x}$ on interval $\left(0, \frac{\pi}{2}\right)$
Application of Derivatives
A
B
C
D
Solution:
$y=\frac{\tan 3 x}{\tan ^3 x}=\frac{3 \tan x-\tan ^3 x}{\tan ^3 x\left(1-3 \tan ^2 x\right)}$
$y=\frac{3-\tan ^2 x}{\tan ^2 x\left(1-3 \tan ^2 x\right)}=\frac{3-t}{t(1-3 t)} \text { where } \tan ^2 x=t>0 $
$\left(t-3 t^2\right) y=3-t$
$3 y^2-(1+y) t+3=0$
$\therefore t>0 \Rightarrow D \geq 0 ; \text { Sum of roots }>0 ; \text { Product of roots }>0$
$\text { hence }(1+y)^2-36 y \geq 0 ; \frac{1+y}{3 y}>0 \text { and } \frac{1}{y}>0 \text { hence } y>0 $
$ y^2-34 y-1 \geq 0$
$(y-17)^2 \geq 288 $
$(y-17)^2-(12 \sqrt{2})^2 \geq 04
$(y-17-12 \sqrt{2})(y-17+12 \sqrt{2}) \geq 0$
${[y-(17+12 \sqrt{2})][y-(17-12 \sqrt{2})] \geq 0}$
Hence $y_{\max }=17-12 \sqrt{2} $
$y_{\min }=17+12 \sqrt{2} $
$y_{\max }+y_{\min }=34 \text { which is rational }$