Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the equation of circle having normals (x-1)(y-2)=0 and a tangent 3 x+4 y=6 ?
Q. Find the equation of circle having normals
(
x
−
1
)
(
y
−
2
)
=
0
and a tangent
3
x
+
4
y
=
6
?
1973
171
AP EAMCET
AP EAMCET 2020
Report Error
A
(
x
−
1
)
2
+
(
y
−
2
)
2
=
1
B
(
x
−
2
)
2
+
(
y
−
1
)
2
=
1
C
(
x
+
1
)
2
+
(
y
+
2
)
2
=
1
D
(
x
+
2
)
2
+
(
y
+
1
)
2
=
1
Solution:
The equation of normals to the circle are
x
−
1
=
0
and
y
−
2
=
0
, so centre of the circle is
(
1
,
2
)
and since
3
x
+
4
y
=
6
is the tangent to the circle so radius
r
=
3
2
+
4
2
3
+
8
−
6
=
1
∴
Equation of required circle is
(
x
−
1
)
2
+
(
y
−
2
)
2
=
1