2073
217
Rajasthan PETRajasthan PET 2012
Report Error
Solution:
Let sin−1(cosecθ)=x+iy ∴cosecθ=sin(x+iy) =sinx.coshy+icosx.sinhy
By comparing, we get sinx.coshy=cosecθ ... (i) and cosx.coshy=0 ...(ii)
From Eq. (ii), we get cosx=0 ⇒x=2π ∴ From Eq. (i), we get sin2π.coshy=cosecθ Or y=cosh−1(cosecθ) ⇒y=log(cosecθ+cotθ) =log(cot2θ) ∴ Imaginary part of sin−1(cosecθ)=log(cot2θ)