Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find imaginary part of sin -1(cosec θ ) .
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Find imaginary part of $ {{\sin }^{-1}}(cosec \theta ) $ .
Rajasthan PET
Rajasthan PET 2012
A
$ \log \left( \cot \frac{\theta }{2} \right) $
B
$ \frac{\pi }{2} $
C
$ \frac{1}{2}\log \left( \cot \frac{\theta }{2} \right) $
D
None of these
Solution:
Let $ {{\sin }^{-1}}(cosec \theta )=x+iy $
$ \therefore $ $ cosec \theta =\sin (x+iy) $
$ =\sin x.\cosh y+i\cos x.\sinh y $
By comparing, we get
$ \sin x.\cosh y=\cos ec\theta $ ... (i) and $ \cos x.\cosh y=0 $ ...(ii)
From Eq. (ii), we get $ cos\text{ }x=0 $
$ \Rightarrow $ $ x=\frac{\pi }{2} $
$ \therefore $ From Eq. (i), we get
$ \sin \frac{\pi }{2}.\cosh y=\cos ec\theta $ Or $ y={{\cosh }^{-1}}(\cos ec\theta ) $
$ \Rightarrow $ $ y=\log (\cos ec\theta +\cot \theta ) $
$ =\log \left( \cot \frac{\theta }{2} \right) $
$ \therefore $ Imaginary part of
$ {{\sin }^{-1}}(\cos ec\theta )=\log \left( \cot \frac{\theta }{2} \right) $