Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
f(x)=∫ limits cos x sin x(1-t+2 t3) d t has in [0,2 π]
Q.
f
(
x
)
=
c
o
s
x
∫
s
i
n
x
(
1
−
t
+
2
t
3
)
d
t
has in
[
0
,
2
π
]
78
118
Application of Derivatives
Report Error
A
a maximum at
4
π
&
a minimum at
4
3
π
B
a maximum at
4
3
π
& a minimum at
4
7
π
C
a maximum at
4
5
π
\& a minimum at
4
7
π
D
neither a maxima nor minima
Solution:
f
′
(
x
)
=
(
1
⋅
cos
x
−
sin
x
cos
x
+
2
sin
3
x
⋅
cos
x
)
−
(
−
1
⋅
sin
x
+
cos
x
sin
x
−
2
cos
3
x
sin
x
)
=
cos
x
+
sin
x
−
2
sin
x
⋅
cos
x
+
2
sin
x
⋅
cos
x
=
cos
x
+
sin
x