Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $f(x)=\int\limits_{\cos x}^{\sin x}\left(1-t+2 t^3\right) d t$ has in $[0,2 \pi]$

Application of Derivatives

Solution:

$f^{\prime}(x)=\left(1 \cdot \cos x-\sin x \cos x+2 \sin ^3 x \cdot \cos x\right)-\left(-1 \cdot \sin x+\cos x \sin x-2 \cos ^3 x \sin x\right)$
$=\cos x+\sin x-2 \sin x \cdot \cos x+2 \sin x \cdot \cos x=\cos x+\sin x$