Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate: ∫ limits0(π/4 ) √1-sin 2x dx
Q. Evaluate:
0
∫
4
π
1
−
s
in
2
x
d
x
8598
248
Integrals
Report Error
A
2
−
1
27%
B
2
+
1
45%
C
2
9%
D
None of these
18%
Solution:
We have,
I
=
0
∫
4
π
1
−
s
in
2
x
d
x
=
0
∫
4
π
s
i
n
2
x
+
co
s
2
x
−
2
s
in
x
cos
x
d
x
=
0
∫
4
π
(
cos
x
−
s
in
x
)
2
=
∫
0
4
π
∣
(
cos
x
−
s
in
x
)
∣
d
x
=
0
∫
π
/4
(
cos
x
−
s
in
x
)
d
x
[
∵
0
<
x
<
π
/4
,
cos
x
>
s
in
x
]
=
[
s
in
x
+
cos
x
]
0
π
/4
=
2
2
−
1
=
2
−
1