Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Evaluate: $\int\limits_{0}^{\frac{\pi}{4 }} \sqrt{1-sin\, 2x} \,\,\, dx $

Integrals

Solution:

We have,

$ I= \int\limits_{0}^{\frac{\pi}{4}}\sqrt{1-sin\, 2x } \,dx $

$= \int\limits_{0}^{\frac{\pi }{4}}\sqrt{sin ^{2}\,x +cos^{2}\,x -2\,sin \,x \,cos\, x }\,dx$

$=\int\limits_{0}^{\frac{\pi }{4}}\sqrt{\left(cos\,x -sin\,x\right)^{2}}= \int_{0}^{\frac{\pi }{4}}\left|\left(cos\,x-sin\, x\right)\right| dx $

$= \int\limits_{0}^{\pi/4}\left(cos\, x-sin\,x\right)dx \left[\because 0 < x < \pi/4, cos\,x > sin\,x \right]$

$ = \left[sin\,x +cos \,x\right]_{0}^{\pi/4} = \frac{2}{\sqrt{2}} -1= \sqrt{2}-1$