Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Evaluate: ∫(1/x 6(log x)2+7log x +2 )dx
Q. Evaluate:
∫
x
{
6
(
l
o
g
x
)
2
+
7
l
o
g
x
+
2
}
1
d
x
2548
255
Integrals
Report Error
A
l
o
g
∣
∣
3
l
o
g
x
+
2
2
l
o
g
x
+
1
∣
∣
+
C
42%
B
2
1
l
o
g
∣
∣
3
l
o
g
x
+
2
2
l
o
g
x
+
1
∣
∣
+
C
35%
C
l
o
g
∣
∣
2
l
o
g
x
+
1
3
l
o
g
x
+
2
∣
∣
+
C
10%
D
None of these
13%
Solution:
Let
I
=
∫
x
{
6
(
l
o
gx
)
2
+
7
l
o
gx
+
2
}
1
d
x
Let
l
o
gx
=
t
⇒
x
1
d
x
=
d
t
∴
I
=
∫
6
t
2
+
7
t
+
2
1
d
t
⇒
I
=
6
1
∫
(
t
+
12
7
)
2
−
(
12
1
2
)
1
d
t
⇒
I
=
6
1
×
2
(
12
1
)
1
l
o
g
∣
∣
t
+
12
7
+
12
1
t
+
12
7
−
12
1
∣
∣
+
K
⇒
I
=
l
o
g
∣
∣
3
t
+
2
2
t
+
1
∣
∣
+
C
=
l
o
g
∣
∣
3
l
o
gx
+
2
2
l
o
gx
+
1
∣
∣
+
C
[
w
h
ere
,
C
=
K
+
l
o
g
2
3
]