Let $I=\int\frac{1}{x\left\{6\left(logx\right)^{2}+7logx+2\right\}}dx $
Let $logx =t \Rightarrow \frac{1}{x}dx = dt$
$\therefore I = \int\frac{1}{6t^{2}+7t +2}dt$
$\Rightarrow I =\frac{1}{6}\int\frac{1}{\left(t+\frac{7}{12}\right)^{2}-\left(\frac{1}{12}^{2}\right)}dt$
$ \Rightarrow I =\frac{1}{6}\times\frac{1}{2\left(\frac{1}{12}\right)}log\left|\frac{t+\frac{7}{12}-\frac{1}{12}}{t+\frac{7}{12}+\frac{1}{12}}\right| +K$
$ \Rightarrow I =log\left|\frac{2t+1}{3t+2}\right|+ C = log \left|\frac{2log x+1}{3log x +2}\right|+C \,\,\,\ \left[where, C = K +log \frac{3}{2}\right]$