Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle lim x arrow 0(((x+2 cos x)3+2(x+2 cos x)2+3 sin (x+2 cos x)/(x+2)3+2(x+2)2+3 sin (x+2)))(10/x) is equal to
Q.
x
→
0
lim
(
(
x
+
2
)
3
+
2
(
x
+
2
)
2
+
3
sin
(
x
+
2
)
(
x
+
2
cos
x
)
3
+
2
(
x
+
2
cos
x
)
2
+
3
sin
(
x
+
2
cos
x
)
)
x
10
is equal to ___
131
141
JEE Main
JEE Main 2022
Limits and Derivatives
Report Error
Answer:
1
Solution:
lim
x
→
10
(
(
x
+
2
)
3
+
2
(
x
+
2
)
2
+
3
s
i
n
(
x
+
2
)
(
x
+
2
c
o
s
x
)
3
+
2
(
x
+
2
c
o
s
x
)
2
+
3
s
i
n
(
x
+
2
c
o
s
x
)
)
x
Form
1
∞
=
e
l
i
m
x
→
0
[
(
(
x
+
2
)
3
+
2
(
x
+
2
)
2
+
3
s
i
n
(
x
+
2
)
(
x
+
2
c
o
s
x
)
3
+
2
(
x
+
2
c
o
s
x
)
2
+
3
s
i
n
(
x
+
2
c
o
s
x
)
)
−
1
]
×
x
100
=
e
l
i
m
x
→
0
[
x
100
(
(
x
+
2
)
3
+
2
(
x
+
2
)
2
+
3
s
i
n
(
x
+
2
)
(
x
+
2
c
o
s
x
)
3
+
2
(
x
+
2
c
o
s
x
)
2
+
3
s
i
n
(
x
+
2
c
o
s
x
)
−
(
(
x
+
2
)
3
+
2
(
x
+
2
)
2
+
3
s
i
n
(
x
+
2
)
)
)
]
=
e
l
i
m
x
→
0
x
100
[
(
8
+
8
+
3
s
i
n
)
2
(
x
+
2
c
o
s
x
)
3
+
(
x
+
2
)
3
+
2
(
x
+
2
c
o
s
x
)
2
−
2
(
x
+
2
)
2
+
3
s
i
n
(
x
+
2
c
o
s
x
)
−
3
s
i
n
(
x
+
2
)
)
]
=
e
16
+
3
s
i
n
2
100
l
i
m
x
→
0
x
(
1
−
2
s
i
n
x
)
−
4
(
x
+
2
)
+
3
c
o
s
(
x
+
2
c
o
s
x
)
×
(
1
−
2
s
i
n
x
)
−
3
c
o
s
(
x
+
2
)
3
(
x
+
2
c
o
s
x
)
2
×
(
1
+
2
s
i
n
x
)
−
3
(
x
+
2
)
2
−
4
(
x
+
2
c
o
s
x
)
=
e
16
+
3
s
i
n
2
100
2
(
1
12
−
3
(
4
)
+
8
×
1
−
8
+
3
c
o
s
2
−
3
c
o
s
2
)
Using L'H rule.
=
e
o
=
1