Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \displaystyle\lim _{x \rightarrow 0}\left(\frac{(x+2 \cos x)^3+2(x+2 \cos x)^2+3 \sin (x+2 \cos x)}{(x+2)^3+2(x+2)^2+3 \sin (x+2)}\right)^{\frac{10}{x}} $ is equal to ___

JEE MainJEE Main 2022Limits and Derivatives

Solution:

$\lim _{x \rightarrow 10}\left(\frac{(x+2 \cos x)^3+2(x+2 \cos x)^2+3 \sin (x+2 \cos x)}{(x+2)^3+2(x+2)^2+3 \sin (x+2)}\right)^x$
Form $1^{\infty}$
$ = e ^{\lim _{x \rightarrow 0}\left[\left(\frac{(x+2 \cos x)^3+2(x+2 \cos x)^2+3 \sin (x+2 \cos x)}{(x+2)^3+2(x+2)^2+3 \sin (x+2)}\right)-1\right] \times \frac{100}{x}} $
$ =e^{\lim _{x \rightarrow 0}\left[\frac{100}{x}\left(\frac{(x+2 \cos x)^3+2(x+2 \cos x)^2+3 \sin (x+2 \cos x)-\left((x+2)^3+2(x+2)^2+3 \sin (x+2)\right)}{(x+2)^3+2(x+2)^2+3 \sin (x+2)}\right)\right]}$
$ =e^{\lim _{x \rightarrow 0} \frac{100}{x}\left[\left(\frac{(x+2 \cos x)^3+(x+2)^3+2(x+2 \cos x)^2-2(x+2)^2+3 \sin (x+2 \cos x)-3 \sin (x+2)}{8+8+3 \sin )^2}\right)\right]}$
$ = e ^{\frac{100}{16+3 \sin ^2} \lim _{x \rightarrow 0} \frac{3(x+2 \cos x)^2 \times(1+2 \sin x)-3(x+2)^2-4(x+2 \cos x)}{x(1-2 \sin x)-4(x+2)+3 \cos (x+2 \cos x) \times(1-2 \sin x)-3 \cos (x+2)}}$
$ = e ^{\frac{100}{16+3 \sin 2} 2}\left(\frac{12-3(4)+8 \times 1-8+3 \cos 2-3 \cos 2}{1}\right)$
Using L'H rule.
$= e ^{ o }=1$