Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle limn → ∞(1+2+3+...+n/n2), n ∈ N, is equal to
Q.
n
→
∞
lim
n
2
1
+
2
+
3
+
...
+
n
,
n
∈
N
, is equal to
4981
204
Limits and Derivatives
Report Error
A
0
15%
B
1
16%
C
2
1
58%
D
4
1
12%
Solution:
As
n
→
∞
lim
n
2
1
+
2
+
3
+
...
+
n
=
n
→
∞
lim
2
n
2
n
(
n
+
1
)
=
n
→
∞
lim
2
1
(
1
+
n
1
)
=
2
1