Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle \lim_{n \to \infty}$$\frac{1+2+3+...+n}{n^{2}}$, $n \in N$, is equal to

Limits and Derivatives

Solution:

As $\displaystyle \lim_{n \to \infty}$$\frac{1+2+3+...+n}{n^{2}}$
$=\displaystyle \lim_{n \to \infty}$$\frac{n\left(n+1\right)}{2n^{2}}$
$=\displaystyle \lim_{n \to \infty}$$\frac{1}{2}\left(1+\frac{1}{n}\right)$
$=\frac{1}{2}$