Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle lim n arrow ∞[(1/1+n)+(1/2+n)+(1/3+n)+ ldots+(1/2 n)] is equal to
Q.
n
→
∞
lim
[
1
+
n
1
+
2
+
n
1
+
3
+
n
1
+
…
+
2
n
1
]
is equal to
150
128
JEE Main
JEE Main 2023
Integrals
Report Error
A
lo
g
e
2
100%
B
lo
g
e
(
3
2
)
0%
C
0
0%
D
lo
g
e
(
2
3
)
0%
Solution:
n
→
∞
lim
(
1
+
n
1
+
…
+
n
+
n
1
)
=
n
→
∞
lim
r
=
1
∑
n
n
+
r
1
=
n
→
∞
lim
r
=
1
∑
n
n
1
(
1
+
n
r
1
)
=
0
∫
1
1
+
x
1
d
x
=
[
ℓ
ln
(
1
+
x
]
0
1
=
ℓ
n
2