Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle \lim _{n \rightarrow \infty}\left[\frac{1}{1+n}+\frac{1}{2+n}+\frac{1}{3+n}+\ldots+\frac{1}{2 n}\right]$ is equal to

JEE MainJEE Main 2023Integrals

Solution:

$\displaystyle \lim _{n \rightarrow \infty}\left(\frac{1}{1+n}+\ldots+\frac{1}{n+n}\right)=\displaystyle\lim _{n \rightarrow \infty} \displaystyle\sum_{r=1}^n \frac{1}{n+r} $
$=\displaystyle\lim _{n \rightarrow \infty} \sum_{r=1}^n \frac{1}{n}\left(\frac{1}{1+\frac{r}{n}}\right) $
$=\int\limits_0^1 \frac{1}{1+x} d x=\left[\ell \ln (1+x]_0^1=\ell n 2\right.$