Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle ∫ (xn-1/x2n+a2) dx dX is equal to
Q.
∫
x
2
n
+
a
2
x
n
−
1
d
x
dX is equal to
1702
201
KEAM
KEAM 2015
Integrals
Report Error
A
na
1
t
a
n
−
1
(
a
x
n
)
+
C
20%
B
a
n
t
a
n
−
1
(
a
x
n
)
+
C
26%
C
a
n
s
i
n
−
1
(
a
x
n
)
+
C
26%
D
a
n
co
s
−
1
(
a
x
n
)
+
C
14%
E
na
1
co
t
−
1
(
a
x
n
)
+
C
14%
Solution:
Let
I
=
∫
x
2
n
+
a
2
x
n
−
1
d
x
Put
x
n
=
t
⇒
n
x
n
−
1
d
x
=
d
t
∴
I
=
n
1
∫
t
2
+
a
2
d
t
=
n
1
⋅
a
1
tan
−
1
a
t
+
C
Put
t
=
x
n
⇒
I
=
na
1
tan
−
1
(
a
X
n
)
+
C