Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle \int \frac{x^{n-1}}{x^{2n}+a^{2}} dx $dX is equal to

KEAMKEAM 2015Integrals

Solution:

Let $I=\int \frac{x^{n-1}}{x^{2 n}+a^{2}} d x$
$\operatorname{Put} x^{n}=t$
$\Rightarrow n x^{n-1} d x=d t$
$\therefore I=\frac{1}{n} \int \frac{d t}{t^{2}+a^{2}}=\frac{1}{n} \cdot \frac{1}{a} \tan ^{-1} \frac{t}{a}+C$
Put $t=x^{n}$
$\Rightarrow I=\frac{1}{n a} \tan ^{-1}\left(\frac{X^{n}}{a}\right)+C$